RESPONSE OF DRUG AMALGAMATION THROUGH COPPER NANOPARTICLES AS MAJESTIC HELPERS TO HALT THE THIRD WAVE OF SARS-COV-2, A REVIEW

Main Article Content

ASMA NAEEM
FAIQA SHAHEEN
ANILA SHAHZADI
HAFIZ MUHAMMAD ARSALAN
NAILA SARWAR
UME HABIBA
NEELAM FARHEEN
HEWAD HEWADMAL
SHAFIA ARSHAD
AMINA ARIF

Abstract

The contemporary contagious ailment is caused by one of the deadliest coronaviruses, the SARS-COV-2. This novel zoonotic entity leads to multi-organ failure and an escalating threat and turbulence all over the world. Albeit a lot of work has been done to beat this virus, it is still radiating consistently. A colossal number of antiviral drugs has been tested to overcome the current pandemic but no promising remedy. A new approach to employ drug amalgamation such as remdesivir with hydroxychloroquine and losartan would better eradicate this outbreak. For this purpose, copper nanoparticles (extracted from a Prophetic, miraculous herb Nigella sativa) would serve as excellent transporters of such kinds of drug composites. In this review, the several possible therapies available across the world will be discussed in addition to the existing evidence for each of them. This new insight would be beneficial to fight against the latest rife.

Keywords:
HCQ, losartan, remdesivir, copper nanoparticles, drug amalgamations, N. sativa

Article Details

How to Cite
NAEEM, A., SHAHEEN, F., SHAHZADI, A., ARSALAN, H. M., SARWAR, N., HABIBA, U., FARHEEN, N., HEWADMAL, H., ARSHAD, S., & ARIF, A. (2022). RESPONSE OF DRUG AMALGAMATION THROUGH COPPER NANOPARTICLES AS MAJESTIC HELPERS TO HALT THE THIRD WAVE OF SARS-COV-2, A REVIEW. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 23(21-22), 1-13. Retrieved from https://ikpresse.com/index.php/PCBMB/article/view/7684
Section
Review Article

References

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020;24:91-98.

Pyrc K, Berkhout B, Van Der Hoek L. The novel human coronaviruses NL63 and HKU1. Journal of Virology. 2007;81:3051-3057.

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research. 2020;7:1-10.

López L, Rodó X. The end of social confinement and COVID-19 re-emergence risk. Nature Human Behaviour. 2020;4: 746-755.

Surjit M, Lal SK. The nucleocapsid protein of the SARS coronavirus: structure, function and therapeutic potential. In: Molecular Biology of the SARS-Coronavirus. Springer. 2010;129- 151.

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology Journal. 2019;16:1-22.

Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? BioMedical research international;2020.

Li F. Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology. 2016;3:237-261.

Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, Tao X, Yu H, Sun S, Tseng C-TK . A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. Journal of virology. 2014;88:7045-7053.

Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, Cui X, Xiao J, Meng T, Zhou W. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. BioRxiv; 2020.

Van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nature Materials. 2020;19:810-812.

Nili A, Farbod A, Neishabouri A, Mozafarihashjin M, Tavakolpour S, Mahmoudi H. Remdesivir: A beacon of hope from Ebola virus disease to COVID‐19. Reviews in Medical Virology. 2020;30:1-13.

Liu W, Zhou P, Chen K, Ye Z, Liu F, Li X, He N, Wu Z, Zhang Q, Gong X. Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis. Canadian Medical Association Journal. 2020;192: E734-E744.

Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Current Opinion in Biotechnology. 2011;22:901-908.

Rahman MT. Potential benefits of combination of Nigella sativa and Zn supplements to treat COVID-19. Journal of Herbal Medicine. 2020;100382.

Lee JB, Miyake S, Umetsu R, Hayashi K, Chijimatsu T, Hayashi T. Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chemistry. 2012;134:2164-2168.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G . Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. 2020;30:269-271.

Saxena SK, Mishra N, Saxena R, Swamy MA, Sahgal P, Saxena S, Tiwari S, Mathur A, Nair MP. Structural and antigenic variance between novel influenza A/H1N1/2009 and influenza A/H1N1/2008 viruses. The Journal of Infection in Developing Countries. 2010;4:001-006.

Pannu J. Running ahead of pandemics: achieving in-advance antiviral drugs. Special Edition Policy Brief; 2020.

Parvathaneni V, Gupta V. Utilizing drug repurposing against COVID-19–Efficacy, limitations, and challenges. Life sciences. 2020;118275.

Farshadpour F, Gharibi S, Taherzadeh M, Amirinejad R, Taherkhani R, Habibian A, Zandi K . Antiviral activity of Holothuria sp. a sea cucumber against herpes simplex virus type 1 (HSV-1). European review for medical and pharmacological sciences. 2014;18:333-337.

Hillaker E, Belfer JJ, Bondici A, Murad H, Dumkow LE. Delayed initiation of remdesivir in a COVID‐19‐positive patient. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2020;40:592-598.

Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry. 2020;295:4773-4779.

Razonable RR. Antiviral drugs for viruses other than human immunodeficiency virus. In: Mayo Clinic Proceedings. Elsevier. 2011;1009-1026.

Hendaus MA. Remdesivir in the treatment of Coronavirus Disease 2019 (COVID-19): A simplified summary. Journal of Biomolecular Structure and Dynamics. 2020;1-6.

Sun D. Remdesivir for treatment of COVID-19: combination of pulmonary and IV administration may offer aditional benefit. The American Association of Pharmaceutical Scientists Journal. 2020;22:1-6.

Amirian ES, Levy JK. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health. 2020;9: 100128.

Cao Y-c, Deng Q-x, Dai S-x. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel medicine and infectious disease. 2020;35:101647.

Sun D. Remdesivir with IV Administration Alone is Unlikely to Achieve Adequate Efficacy and Pulmonary Delivery should be Investigated in COVID-19 Patients'. Ann Arbor. 2020;1001:48109.

Angelakis E. Weight gain by gut microbiota manipulation in productive animals. Microbial pathogenesis 2017;106: 162-170.

Devaux CA, Rolain J-M, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection; 2020.

Delvecchio R, Higa LM, Pezzuto P, Valadão AL, Garcez PP, Monteiro FL, Loiola EC, Dias AA, Silva FJ, Aliota MT. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses. 2016;8:322.

Te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS pathogens. 2010;6:e1001176.

Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ. Chloroquine is a zinc ionophore. Public library of Science one. 2014;9: e109180.

Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International journal of antimicrobial agents. 2020;55:105960.

Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, Zhou J, Shi G, Fang N, Fan J . Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. Biorxiv (bio-archive); 2020.

Martin-Blondel G, Ruiz S, Murris M, Faguer S, Duhalde V, Eyvrard F, Izopet J, Mansuy J-M, Rolland Y, Delavigne K. Hydroxychloroquine in Coronavirus Disease 2019 Patients: What Still Needs to Be Known About the Kinetics. Clinical Infectious Diseases. 2020;71:2962 -2964.

Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B, Zhang Z. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Medrxiv ; 2020.

Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y, Guo X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. 2020;Viruses 12:244.

Colmenero J, Bataller R, Sancho-Bru P, Domínguez M, Moreno M, Forns X, Bruguera M, Arroyo V, Brenner DA, Ginès P. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2009;297: G726-G734.

Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, Hausvater A, Newman JD, Berger JS, Bangalore S. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. New England Journal of Medicine. 2020;382:2441-2448.

Malha L, Mueller FB, Pecker MS, Mann SJ, August P, Feig PU. COVID-19 and the renin-angiotensin system. Kidney International Reports. 2020;5:563-565.

Li W, Hulswit RJ, Widjaja I, Raj VS, McBride R, Peng W, Widagdo W, Tortorici MA, Van Dieren B, Lang Y. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences. 2017;114: E8508-E8517

Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020;75:1730-1741.

Szauder I, Csajági E, Major Z, Pavlik G, Ujhelyi G. treatment of hypertension: favourable effect of the twice-daily compared to the once-daily (evening) administration of perindopril and losartan. Kidney and Blood Pressure Research. 2015;40:374-385.

Kelleni MT. SARS CoV-2 viral load might not be the right predictor of COVID-19 mortality. Journal of Infection. 2021;82: e35.

Arabi YM, Alothman A, Balkhy HH, Al-Dawood A, AlJohani S, Al Harbi S, Kojan S, Al Jeraisy M, Deeb AM, Assiri AM. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials. 2018;19:1-13.

Goldberg MS. Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 2015;161:201-204.

Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. International Journal of Hygiene and Environmental Health. 2016;219:585-591.

Noyce J, Michels H, Keevil C. Inactivation of influenza A virus on copper versus stainless steel surfaces. Applied and Environmental Microbiology. 2007;73: 2748-2750.

Cortes AA, Zuñiga JM. The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review. Diagnostic microbiology and infectious disease. 2020; 115176.

Poggio C, Colombo M, Arciola CR, Greggi T, Scribante A, Dagna A. Copper-alloy surfaces and cleaning regimens against the spread of SARS-CoV-2 in dentistry and orthopedics. From fomites to anti-infective nanocoatings. Materials. 2020;13: 3244.

Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, Glenn GM, Smith GE, Frieman MB. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32:3169-3174.

Pingret D, Fabiano-Tixier A-S, Chemat F. An improved ultrasound Clevenger for extraction of essential oils. Food Analytical Methods. 2014;7:9-12.

Lee H-J, Lee G, Jang NR, Yun JH, Song JY, Kim BS. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology. 2011;1:371-374.

Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine. 2013;3:337-352.

Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H. Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iranian journal of pharmaceutical research: IJPR. 2017;16:2.