AN UPDATED REVIEW IN CORRELATING FAT MASS OBESITY ASSOCIATED GENETIC POLYMORPHISM IN WOMEN WITH POLYCYSTIC OVARIAN CONDITIONS

Main Article Content

R. REHANA BABU
FLORIDA TILTON
ANEESH NAIR
K. VIJAYALAKSHMI
P. B. RAMESH BABU

Abstract

Women with Polycystic ovarian condition (PCOS) are reported to have obesity, which essentially influences the disorder's associated with insulin resistance, type 2 diabetes and cardiovascular disorders.  PCOS is a problem of endocrine abnormality in women between the ages of 14-44. In this paper we review on recent methods in genotyping of fat mass obesity (FTO) associated gene single nucleotide polymorphism and its relationship with PCOS. Literature survey indicated that in diagnosis of PCOS, blood tests were normally used in gene polymorphism investigations and DNA tests were used for genotyping examination. The quick detection by polymerase chain reaction (PCR) amplification is one of the commonest tests for identifying single nucleotide polymorphism (SNP) for FTO traits which is being routinely used to understand the frequency of SNP polymorphism in a given set of population in various countries and in ethnic groups. Worldwide, extensive investigations were carried out to analyze the genotypes of FTO traits and its association in understanding the etiology of PCOS. Such literature surveys are beneficial in developing simple PCOS diagnostic                         methods and finding new approaches in therapeutic interventions.  In this review paper, we highlight the genetic basis and importance of testing the FTO parameter in understanding the pathogenesis and the management of PCOS.

Keywords:
PCOS, single nucleotide polymorphism, FTO quality, obesity

Article Details

How to Cite
BABU, R. R., TILTON, F., NAIR, A., VIJAYALAKSHMI, K., & BABU, P. B. R. (2022). AN UPDATED REVIEW IN CORRELATING FAT MASS OBESITY ASSOCIATED GENETIC POLYMORPHISM IN WOMEN WITH POLYCYSTIC OVARIAN CONDITIONS. Journal of Biochemistry International, 9(5), 10-18. Retrieved from https://ikpresse.com/index.php/JOBI/article/view/7655
Section
Review Article

References

Wojciechowski P, Lipowska A, Rys PKG. et al., Impact of FTO genotypes on BMI and weight in polycysticovary syndrome: a systematic review and meta-analysis. Diabetologia. 2012;55(10):2636-2645.

Huiqin Yuan, Guoping Zhu, Fang Wang, Xiang Wang, HuihuiGuo& Mo Shen. Interaction between common variants of FTO and MC4R is associated with risk of PCOS. Reproductive Biology and Endocrinology. 2015;13(55).

Liu A, Xie HJ, Xie H, Liu J , Yin J, Hu JS, Peng CY 3. Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC Medical Genetics. 2017;18(1):89.

Finucane MM, Stevens GA, Cowan MJ et al (2011) National,regional, and global trends in body-mass index since 1980: systematicanalysis of health examination surveys andepidemiological studies with 960 country-years and 9•1 millionparticipants. Lancet. 2012;377:557–567.

Peng S, Zhu Y, Xu F, Ren X, Li X, Lai M. FTO genepolymorphisms and obesity risk: a meta-analysis. BMC Med. 2011;9:71.

Frayling TM, Timpson NJ, Weedon MN et al. A commonvariant in the FTO gene is associated with body mass index andpredisposes to childhood and adult obesity. Science 2007;316:889–894rth.

Scuteri A, Sanna S, Chen W-M et al. Genome-wide associationscan shows genetic variants in the FTO gene are associatedwith obesity-related traits. PLoS Genet. 2007;3:e115

Dina C, Meyre D, Gallina S et al. Variation in FTO contributesto childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–726.

Speliotes EK, Willer CJ, Berndt SI et al. Association analysesof 249,796 individuals reveal 18 new loci associated withbody mass index. Nat Genet. 2010;42:937–948

Loos RJF, Lindgren CM, Li S et al. Common variants nearMC4R are associated with at mass, weight and risk of obesity. Nat Genet. 2008;40:768–775

Attaoua R, Ait El Mkadem S, Radian S, Fica S, Hanzu F, Albu A, Gheorghiu M, Coculescu M, Grigorescu F: FTO gene associates to metabolic syndrome in women with polycystic ovary syndrome. Biochem Biophys Res Commun. 2008;373:230-234.

Zeggini E, Weedon MN, Lindgren CM et al. Replication ofgenome-wide association signals in UK samples reveals risk locifor type 2 diabetes. Science. 2007;316:1336– 1341.

Scott LJ, Mohlke KL, Bonnycastle LL et al. A genome-wideassociation study of type 2 diabetes in Finns detects multiplesusceptibility variants. Science. 2007;316:1341–1345

Wehr E, Schweighofer N, Moller R, Giuliani A, Pieber TR, Obermayer-Pietsch B. Association of FTO gene with hyperandrogenemia and metabolic parameters in women with polycystic ovary syndrome. Metabolism. 2010;59:575–80.

Al-Attar SA, Pollex RL, Ban MR et al. Association betweenthe FTO rs9939609 polymorphism and the metabolic syndrome ina non-Caucasian multi-ethnic sample. Cardiovasc Diabetol. 2008;7:5

Villalobos-Comparan M, Teresa Flores-Dorantes M, TeresaVillarreal-Molina M et al. The FTO gene is associated withadulthood obesity in the Mexican population. Obesity. 2008;16:2296–2301

Tan JT, Dorajoo R, Seielstad M et al. FTO variants areassociated with obesity in the Chinese and Malay populations inSingapore. Diabetes. 2008;57:2851–2857

Chang YC, Liu PH, Lee WJ et al. Common variation inthe fat mass and obesity-associated (FTO) gene confers risk ofobesity and modulates BMI in the Chinese population. Diabetes. 2008;57:2245–2252.

Li H, Kilpeläinen TO, Liu C et al. Association of geneticvariation in FTO with risk of obesity and type 2 diabetes with datafrom 96,551 East and South Asians. Diabetologia. 2012;55:981–995.

Hassanein MT, Lyon HN, Nguyen TT et al. Fine mapping ofthe association with obesity at the FTO locus in African-derivedpopulations. Hum Mol Genet. 2010;19:2907–2916.

Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet. 2010;26(6):266-274.

Nagrani R, Foraita R, Gianfagna F. et al. Common genetic variation in obesity, lipid transfer genes and risk of Metabolic Syndrome: Results from IDEFICS/I.Family study and meta-analysis. Sci Rep. 2020;10:7189.

Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO, Dumesic DA. Nonhuman primate models of polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1-2):21-28.

DOI:10.1016/j.mce.2013.01.013.

Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev. 2020;pii:5822822.

Abbott DH, Nicol LE, Levine JE, Xu N, Goodarzi MO, Dumesic DA. Nonhuman primate models of polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1-2):21-8.

Alnafjan, AA, Alkhuriji AF, Alobaid HM. et al. Association of FTO gene variants rs9939609 and rs1421085 with polycystic ovary syndrome. Egypt J Med Hum Genet. 2022;23:45.

Liu AL, Xie HJ, Xie HY, Liu J, Yin J, Hu JS, Peng CY. Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC Medical Genetics. 2017;18(1):89.

Ramon B, Ramos and Poli Mara Spritzerab. FTO gene variants are not associated with polycystic ovary syndrome in women from Southern Brazil. Gene. 2015;560(1):25-29.

Corbett SJ, McMichael AJ, Prentice AM. Type 2 diabetes, cardiovascular disease, and the evolutionary paradox of the polycystic ovary syndrome: a fertility first hypothesis. Am J Hum Biol. 2009;21(5):587-98.

Rojas J, Chávez M, Olivar L, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Reprod Med. 2014;2014:719050.

DOI:10.1155/2014/719050.

De Zegher F, Lopez-Bermejo A, Ibáñez L. Adipose tissue expandability and the early origins of PCOS. Trends Endocrinol Metab. 2009;20(9):418-23.

Slawik M, Vidal-Puig AJ. Adipose tissue expandability and the metabolic syndrome. Genes Nutr. 2007;2(1):41-45.

DOI:10.1007/s12263-007-0014-9.

Zhu JL, Chen Z, Feng WJ, Long SL, Mo ZC. Sex hormone-binding globulin and polycystic ovary syndrome. Clin Chim Acta. 2019 ;499:142-148.

Xing C, Zhang J, Zhao H, He B. Effect of Sex Hormone-Binding Globulin on Polycystic Ovary Syndrome: Mechanisms, Manifestations, Genetics, and Treatment. Int J Womens Health. 2022;14:91-105.

Priliani, Lidwina et al. “Obesity in the Balinese is associated with FTO rs9939609 and rs1421085 single nucleotide polymorphisms.” PeerJ. 2020;8:e8327.

DOI:10.7717/peerj.8327.

Liu Y, Chen Y. Fat Mass and Obesity Associated Gene Polymorphism and the Risk of Polycystic Ovary Syndrome: A Meta-analysis. Iran J Public Health. 2017;46(1):4-11.

Barber TM, Hanson P, Weickert MO, Franks S. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin Med Insights Reprod Health. 2019;13:117955811987404.

Ollila M-ME, Piltonen T, Puukka K, Ruokonen A, Järvelin M-R, Tapanainen JS et al. Weight gain and dyslipidemia in early adulthood associate with polycystic ovary syndrome: prospective cohort study. J Clin Endocrinol Metab. 2016;101(2):739–747

Holte J, Bergh T, Berne CH, Wide L, Lithell H. Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1995;80(9):2586–2593

Alvarez-Blasco F, Botella-Carretero JI, San Millán JL, Escobar-Morreale HF. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. Arch Intern Med. 2006;166(19):2081–2086

Korhonen S, Hippeläinen M, Niskanen L, Vanhala M, Saarikoski S. Relationship of the metabolic syndrome and obesity to polycystic ovary syndrome: a controlled, population-based study. Am J Obstet Gynecol. 2001;184(3):289–296

Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet. 2010;26(6):266–274.

Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2016;31(12):2841–2855

Tan J, Hao X, Zhao T, Ying J, Li T, Cheng L. Association between long-chain non-coding RNA SRA1 gene single-nucleotide polymorphism and polycystic ovary syndrome susceptibility. J Assist Reprod Genet. 2020;37(10):2513–2523.

Chen J, Shen S, Tan Y, Xia D, Xia Y, Cao Y et al. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. J Ovarian Res. 2015;8:11.

Chitme HR, Al Azawi EAK, Al Abri AM, Al Busaidi BM, Salam ZKA, Al Taie MM et al. Anthropometric and body composition analysis of infertile women with polycystic ovary syndrome. J Taibah Univ Med Sci. 2017;12(2):139–145.

Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–726.

Fauser BCJM, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97(1):28–38.

Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin Endocrinol. 2018;89(3):251–268

Tsikouras P, Spyros L, Manav B, Zervoudis S, Poiana C, Nikolaos T et al. Features of polycystic ovary syndrome in adolescence. J Med Life. 2015;8(3):291.

Ramos RB, Spritzer PM. FTO gene variants are not associated with polycystic ovary syndrome in women from Southern Brazil. Gene. 2015;560(1):25–29.

Chen J, Shen S, Tan Y, Xia D, Xia Y, Cao Y et al. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. J Ovarian Res. 2015;8:11

Hahn S, Tan S, Sack S, Kimmig R, Quadbeck B, Mann K et al. Prevalence of the metabolic syndrome in German women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2007;115(2):130–135.

Sam S. Obesity and polycystic ovary syndrome. Obes Manag. 2007;3(2):69–73

Alvarez-Blasco F, Botella-Carretero JI, San Millán JL, Escobar-Morreale HF. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. Arch Intern Med. 2006;166(19):2081–2086

Yousuf AM, Kannu FA, Youssouf TM, Alsuhaimi FN, Aljohani AM, Alsehli FH, Khabour OF, Almutawif YA, Najim MA, Mahmood HA. Lack of association between fat mass and obesity-associated genetic variant (rs8050136) and type 2 diabetes mellitus. Saudi Med J. 2022;43(2):132-138.

Wang R, Wang W, Wang L, Yuan L, Cheng F, Guan X, Zheng N, Yang X. FTO protects human granulosa cells from chemotherapy-induced cytotoxicity. Reprod Biol Endocrinol. 2022;20(1):39.

DOI: 10.1186/s12958-022-00911-8. PMID: 35219326; PMCID: PMC8881882.

Wang Z, Wang Y, Yang T, et al. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther. 2017;8(1):11

Kim H, Jang S, Lee YS. The m6A(m)-independent role of FTO in regulating WNT signaling pathways. Life Sci Alliance. 2022;5(5):e202101250.

DOI: 10.26508/lsa.202101250. PMID: 35169043; PMCID: PMC8860091.

Huang J, Sun W, Wang Z, Lv C, Zhang T, Zhang D, Dong W, Shao L, He L, Ji X, Zhang P, Zhang H. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res. 2022;41(1):42.

DOI: 10.1186/s13046-022-02254-z. PMID: 35090515; PMCID: PMC8796435.

Kim H, Jang S, Lee YS. The m6A(m)-independent role of FTO in regulating WNT signaling pathways. Life Sci Alliance. 2022;5(5):e202101250.

DOI: 10.26508/lsa.202101250. PMID: 35169043; PMCID: PMC8860091.

Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. Fat mass and obesity-associated protein promotes liver steatosis by targeting PPARα. Lipids Health Dis. 2022 Mar 13;21(1):29.

DOI: 10.1186/s12944-022-01640-y. PMID: 35282837; PMCID: PMC8918283.

Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, et al. Epidemiological Features of NAFLD From 1999 to 2018 in China. Hepatology. 2020;71(5):1851–64.

DOI: 10.1002/hep.31150.

Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and NonalcoholicSteatohepatitis. Hepatology. 2019;69(6):2672–82

Zhou Y, Wang Q, Deng H, Xu B, Zhou Y, Liu J, Liu Y, Shi Y, Zheng X, Jiang J. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis. 2022;13(1):72.

DOI: 10.1038/s41419-022-04503-7. PMID: 35064107; PMCID: PMC8782929.

Yang W, Xie L, Wang P, Zhuang C. MiR-155 regulates m6A level and cell progression by targeting FTO in clear cell renal cell carcinoma. Cell Signal. 2022;91:110217.

DOI: 10.1016/j.cellsig.2021.110217. Epub 2021 Dec 16. PMID: 34921979.

Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol. 2021;106(12):2423-2433.

DOI: 10.1113/EP089901. Epub 2021 Nov 21. PMID: 34713923.

Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol. 2018;9:1517.

DOI: 10.3389/fphys.2018.01517. PMID: 30425651; PMCID: PMC6218530.

Binh TQ, Linh DT, Chung LTK, Phuong PT, Nga BTT, Ngoc NA, Thuyen TQ, Tung DD, Nhung BT. FTO-rs9939609 Polymorphism is a Predictor of Future Type 2 Diabetes: A Population-Based Prospective Study. Biochem Genet. 2022;60(2):707-719.

DOI: 10.1007/s10528-021-10124-0. Epub 2021 Aug 19. PMID: 34414523; PMCID: PMC8375613.

Leite LCG, Dos Santos MC, Duarte NE, Horimoto ARVR, Crispim F, Vieira Filho JPB, Dal Fabbro AL, Franco LJ, Moises RS. Association of fat mass and obesity-associated (FTO) gene rs9939609 with obesity-related traits and glucose intolerance in an indigenous population, the Xavante. Diabetes Metab Syndr. 2022;16(1):102358.

DOI: 10.1016/j.dsx.2021.102358. Epub 2021 Dec 3. PMID: 34920192.

(Ning-Ning Xie, Fang-Fang Wang, Jue Zhou, Chang Liu, Fan Qu, "Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network", BioMed Research International. 2020;Article ID 2613091: 13.

Meena DK, Manimekalai DM, Rethinavalli S. “A novel framework for filtering the PCOS attributes using data mining techniques,” International Journal of Engineering Research & Technology. 2015;4 (1):702–706.

View at: Google Scholar

Vikas B, Anuhya B, Bhargav KS, Sarangi S, Chilla M. “Application of the apriori algorithm for prediction of Polycystic Ovarian Syndrome (PCOS),” in Information Systems Design and Intelligent Applications., Springer View at: Google Scholar. 2018:934–944.

Zhang XZ, Pang YL, Wang X, Li YH/ “Computational characterization and identification of human polycystic ovary syndrome genes,” Scientific Reports. 2018;8(1):article 12949.

View at: Publisher Site | Google Scholar

Cheng JJ, Mahalingaiah S. “Data mining polycystic ovary morphology in electronic medical record ultrasound reports,” Fertility Research and Practice. 2019;5(1):13.

Available: Publisher Site | Google Scholar

Ho CH, Chang CM, Li HY, Shen HY, Lieu FK, Wang PSG. “Dysregulated immunological and metabolic functions discovered by a polygenic integrative analysis for PCOS,” Reproductive BioMedicine Online. 2020;40(1):160–167.

View at: Publisher Site | Google Scholar

Jesintha Mary M, Vetrivel U, Munuswamy D, Melanathuru V. PCOSDB: PolyCystic Ovary Syndrome Database for manually curated disease associated genes. Bioinformation. 2016;12(1):4-8.

Published 2016 Jan 31.

DOI:10.6026/97320630012004

Nor Afiqah-Aleng, Sarahani Harun, Mohd Rusman Arief A-Rahman, Nor Azlan Nor Muhammad, Zeti-Azura Mohamed-Hussein, PCOSBase: a manually curated database of polycystic ovarian syndrome, Database. 7; 2017

Nida Ajmal, Sanam Zeib Khan, Rozeena Shaikh. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article, European Journal of Obstetrics & Gynecology and Reproductive Biology/ 2019;X:3.