Main Article Content



In this work, we described the two-step synthesis of Tri-substitutedtriazoles using microwave irradiation technique with ferric chloride as catalyst. The acid catalyzed reaction between hydrazine 1 with various aromatic aldehydes (2a-d) in ethanol as a solvent gave desired hydrazones (3a-3d followed by elimination process by losing water in the first step. In the second step, conventional and microwave synthesis of 1,2,4-triazoles proceeds through a cascade C−H functionalization, C−N double bond formation, and oxidative aromatization sequence. Hydrazones (3a-3d) underwent cyclization with aliphatic amines (4e & 4f) in CH3CN in the presence of a catalyst I2 and mild oxidizing agent t-butyl hydro peroxide/ H2O2 and the reaction mixture was stirred at 900 °C for 4 hr or under microwave irradiation using silica gel supported by ferric chloride (SiO2-FeCl3) to afford pure 1,2,4-triazole derivatives 5ea-5ed & 5fa-5fd shown in Scheme 1and Table 1.Capture20.PNG

1,2,4-triazoles, hydrazones, oxidative aromatization, cascade reaction, conventional method and MWI

Article Details

How to Cite
KAVITHA, P., EGA, J. K., & SIDDOJU, K. (2021). STEPWISE SYNTHESIS OF TRI SUBSTITUTED 1, 2, 4-TRIAZOLES BY OXIDATIVE AROMATIZATION VIA CASCADE FUNCTIONALIZATION. Journal of Applied Chemical Science International, 12(1), 32-39. Retrieved from
Short Communications


(a) Moulin A, Bibian M, Blayo AL, El Habnouni S, Martinez J, Fehrentz JA. Chem. Rev. 2010, 110, 1809.

(b) Battaglia U, Moody CJJ. Nat. Prod. 2010;73, 1938.

(c) Al-Soud YA, Heydel M, Hartmann RW. Tetrahedron Lett. 2011;52, 6372.

(d) Naito Y, Akahoshi F, Takeda S, Okada T, Kajii M, Nishimura H, Sugiura M, Fukaya C, Kagitani YJ. Med. Chem. 1996;39, 3019.

(a) Emilsson H, Salender H, Garader J. Eur. J. Med. Chem. Chim. Ther. 1985;21, 333.

(b) Kaku Y, Tsuruoka A, Kakinuma H, Tsukada I, Yanagisawa M, Naito T. Chem. Pharm. Bull. 1998;46, 1125.

(c) Koltin Y, Hitchcock CA. Curr. Opin. Chem. Biol. 1997;1, 176.

(d) Zirngibl L. Antifungal Azoles: A Comprehensive Survey of their Structures and Properties; Wiley-VCH: New York;1998.

(a) Haycock-Lewandowski, SJ, Wilder A, Ahman J. Org. Process Res. Dev. 2008;12, 1094.

(b) Turner K. Org. Process Res. Dev. 2012;16, 727.

(c) Siddaiah V, Basha GM, Srinuvasarao R, Yadav SK. Catal. Lett. 2011;141, 1511.

(d) Nisbet-Brown E, Olivieri NF, Giardina PJ, Grady RW, Neufeld EJ, Sechaud R, Krebs-Brown AJ, Anderson JR, Alberti D, Sizer KC, Nathan DG. Lancet 2003;361, 1597.

(a) Zhang JP, Lin YY, Huang XC, Chen XM. J. Am. Chem. Soc. 2005;127, 5495.

(b) Wu PL, Feng XJ, Tam HL, Wong MS, Cheah KW. J. Am. Chem. Soc. 2009;131, 886.

(c) Klingele MH, Brooker S. Coord. Chem. Rev. 2003;241, 119.

(d) Haasnoot JG, Coord. Chem. Rev. 2000;200−202, 131.

(e) Tao Y, Wang Q, Ao L, Zhong C, Yang C, Qin J, Ma DJ. Phys. Chem. C. 2010;114, 601.

Oka H, Joshi RV, Tanabe J, Lahiri S, Vashi D, Ghogale P. WO 2006114377; 2006.

Bao-GuiCai Ze-Le Chen, Guo-Yong Xu, Jun Xuan, Wen-Jing Xiao. [3 + 2]-Cycloaddition of 2H-Azirines with Nitrosoarenes: Visible-Light-Promoted Synthesis of 2,5-Dihydro-1,2,4-oxadiazoles. Organic Letters 2019;2 (11) :4234-4238.

Harvey JA, Dale George R, Hodges,Guy C. Lloyd-Jones. Taming AmbidentTriazole Anions: Regioselective Ion Pairing Catalyzes Direct N-Alkylation with Atypical Regioselectivity. Journal of the American Chemical Society 2019;141 (17):7181-7193.

Sevilya N. Yunusova, Dmitrii S. Bolotin, Vitalii V. Suslonov, Mikhail A. Vovk, Peter M. Tolstoy, Vadim Yu. Kukushkin. 3-Dialkylamino-1,2,4-triazoles via Zn II-Catalyzed Acyl Hydrazide–Dialkylcyanamide Coupling. ACS Omega. 2018;3(7):7224-7234.

Na Yang, Gaoqing Yuan. A Multicomponent Electrosynthesis of 1,5-Disubstituted and 1-Aryl 1,2,4-Triazoles. The Journal of Organic Chemistry. 2018;83 (19):11963-11969.

(a)Wang YG, Xu WM, Huang XJ. Comb. Chem. 2007;9, 513.

Zhang Q, Keena SM, Peng Y, Nair AC, Yu SJ, Howells RD, Welsh WJJ. Med. Chem. 2006;49, 4044.

(b) Stocks MJ, Cheshire DR, Reynolds R. Org. Lett. 2004;6, 2969.

(c) Li ZH, Wong MS, Fukutani H, Tao Y. Org. Lett. 2006;8, 4271.

(d) Zhang Q, Keenan SM, Peng Y, Nair AC, Yu SJ, Howells RD, Welsh WJJ. Med. Chem. 2006;49, 4044.

(a) Staben ST, Blaquiere N. Angew. Chem., Int. Ed. 2010;49, 325.

(b)Ueda S, Nagasawa HJ. Am. Chem. Soc. 2009;131, 15080

(c) Sudheendran K, Schmidt D, Frey W, Conrad J, Beifuss U. Tetrahedron 2014;70, 1635.

(d) Castanedo GM, Seng PS, Blaquiere N, Trapp S, Staben STJ. Org. Chem. 2011;76, 1177.

(e) Huang H, Guo W, Wu W, Li CJ, Jiang H. Org. Lett. 2015;17,2894

(f) Guru MM, Punniyamurthy TJ. Org. Chem. 2012;77, 5063.

(g) Bechara WS, Khazhieva IS, Rodriguez E, Charette AB. Org. Lett. 2015;17,1184.

(h) Huang H, Guo W, Wu W, Li CJ, Jiang H. Org. Lett. 2015;17, 2894.

(a) He ZH, Li HR, Li ZPJ. Org. Chem. 2010;75, 4636.

(b) Yang FL, Tian SK. Angew. Chem. Int. Ed 2013;52, 4929.

(c) Yan Y, Zhang Y, Feng C, Zha Z, Wang Z. Angew. Chem., Int. Ed. 2012;51,8077.

(d) Gao Q, Liu S, Wu X, Wu A. Org. Lett. 2014;16,4582.

(f) Liu D, Lei A. Chem. - Asian J. 2015;10, 806.

(g) Chen Z, Yan Q, Liu Z, Zhang Y. Chem. - Eur. J. 2014;20, 17635.

(e) Kü pper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW, III; Lu ZL, Jonsson M, Kloo L. Angew. Chem., Int. Ed. 2011;50,11598.

Dong-Qing Wua, Jian- Li Hea, Jun-Ke Wanga, Xi-Cun Wangb.; Ying-Xiao Zonga.; Journal of Chemical Research. 2006;293–294.