SOIL MICROBIAL COMMUNITIES AFFECT DEVELOPMENT OF Cedrus atlantica M.

Main Article Content

BELKACEM EL AMRANI
https://orcid.org/0000-0002-8969-199X
MOHAMMED BENDRISS AMRAOUI
https://orcid.org/0000-0003-1442-7497

Abstract

Soil microbial communities (SMC) play a key role in plant responses to environmental changes, particularly in cedar forest ecosystems, but the ecological and physiological effects of the microflora on cedrus atlantica are poorly understood. In this study, we investigated the dependence of cedar on natural soil microflora. The results showed that the Taz soil, compared to the other soils, stimulates the dry weight (DW) and decreases the root density of seedlings. In contrast to this, the dry weight responses to the enrichment are negative on Taz soil, but root density and tertiary root numbers are significantly increased. In native soil, Pearson test shows that the dry weight of cedar needles and stem are positively related to total microflora but that of the main root and secondary roots (R2) are negatively linked to fungi. On the other hand, yeast and actinomycetes are negatively correlated with R2 abundance. The present study discusses for the first time the effect resulting from the interaction between native microflora of forest cedar soil on growth of C. atlantica seedlings.

Keywords:
Cedrus atlantica, soil, SMC, fungi, growth

Article Details

How to Cite
AMRANI, B. E., & AMRAOUI, M. B. (2022). SOIL MICROBIAL COMMUNITIES AFFECT DEVELOPMENT OF Cedrus atlantica M. Asian Journal of Plant and Soil Sciences, 7(1), 43-50. Retrieved from https://ikpresse.com/index.php/AJOPSS/article/view/7335
Section
Original Research Article

References

M’hirit, O. Le Cèdre de l’Atlas (Cedrus atlantica Manetti) Présentation Générale et État Des Connaissances à Travers Le Réseau Silva Méditerranea. Ann Rech Maroc. 1994;T (27) :3–21.

Terrab A, Hampe A, Lepais O, Talavera S, Vela E, Stuessy TF. Phylogeography of North African Atlas Cedar (Cedrus Atlantica, Pinaceae): Combined Molecular and Fossil Data Reveal a Complex Quaternary History. Am. J. Bot. 2008;95 :1262– 1269. DOI:10.3732/ajb.0800010.

Sabatier S, Baradat P, Barthelemy D. Intra- and interspecific variations of polycyclism in young trees of Cedrus Atlantica (Endl.) Manetti Ex. Carrière and Cedrus Libani A. Rich (Pinaceae). Ann Sci. 2003 ;60 :19– 29. DOI:10.1051/forest:2002070.

EL Amrani B, Bendriss Amraoui M. Biomechanics of atlas cedar roots in response to the medium hydromechanical characteristics. Scientifica. 2020;2020:1–11. DOI:10.1155/2020/7538698.

IUCN Cedrus atlantica: Thomas, P.: The IUCN Red List of Threatened Species 2013: E.T42303A2970716 2013.

Zin el Abidine, A.Z, Lamhamedi, M.S, Taoufik, A. Relations hydriques des arbres sains et deperissants de Cedrus atlantica M. au moyen atlas tabulaire au maroc. Geo-Eco-Trop. 2013;37:157–176.

Toth, J. Le cedre dans quelques pays du pourtour mediterraneen et dans deux autres pays a grande importance forestiere. For. Méditerranéenne. 1980; t. II.(1):23–30.

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013;11:789–799. DOI:10.1038/nrmicro3109.

van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008;11:296–310. DOI:10.1111/j.1461-0248.2007.01139.x.

Chaudhary DR, Gautam RK, Yousuf B, Mishra A, Jha B. Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes. Appl. Soil Ecol. 2015;91:16–26. DOI:10.1016/j.apsoil.2015.02.003.

Boukcim H, Conventi S, Mousain D. Ectomycorhization de Cedrus atlantica en conditions contrôlées : Efficacité de Deux Formes d’inoculum Mycélien. Ann Sci. 2002; 59:839–846.

Gaba-Chahboub H, Lamhamedi MS, Abrous-Belbachir O. Effet de l’inoculation Ectomycorhizienne En Pépinière Sur La Croissance et La Nutrition Des Plants Du Cèdre de l’Atlas En Algérie. Bois Forets Trop. 2016;4:57–68. DOI:10.19182/bft2016.330.a31319

Nezzar-Hocine H, Perrin R, Halli-Hargas R, Chevalier G. Ectomycorrhizal Associations with Cedrus Atlantica (Endl) Manetti Ex Carrière. I. Mycorrhizal Synthesis with Tricholoma Tridentinum Singer Var. Cedretorum Bon. Mycorrhiza. 1998 ;8 :47–51. DOI:10.1007/s005720050210.

Abourouh M. Essai de mycorhization en pepiniere par les spores de pisolithus tinctorius. Ann Rech Maroc. 1993 ;26 :126–137.

Boukcim H, Pages L, Plassard C, Mousain D. root system architecture and receptivity to mycorrhizal infection in seedlings of Cedrus Atlantica as Affected by Nitrogen Source and Concentration. Tree Physiol. 2001;21:109–115. DOI:10.1093/treephys/21.2-3.109.

Gryndler M, Beskid O, Hujslová M, Konvalinková T, Bukovská P, Zemková L, Hršelová H, Jansa J. Soil receptivity for ectomycorrhizal fungi: Tuber aestivum is specifically stimulated by calcium carbonate and certain organic compounds, but not mycorrhizospheric bacteria. Appl. Soil Ecol. 2017 ;117–118 :38–45. DOI:10.1016/j.apsoil.2017.05.007.

Garbaye J. Tansley Review No. 76 Helper Bacteria: A New Dimension to the Mycorrhizal Symbiosis. New Phytol. 1994 ;128 :197–210. DOI:10.1111/j.1469-8137.1994.tb04003.x.

Duponnois R, Garbaye J. Mycorrhization helper bacteria associated with the douglas fir-laccaria laccata symbiosis: Effects in aseptic and in glasshouse conditions. Ann. Sci. For. 1991;48:239–251. DOI:10.1051/forest:19910301

Frey-Klett P, Garbaye J, Tarkka M. The Mycorrhiza Helper Bacteria Revisited. New Phytol. 2007;176 :22–36. DOI:10.1111/j.1469-8137.2007.02191.x.

El Amrani, B, Bendriss Amraoui M. Effects of some properties of cedar forest soils on secondary roots of Cedrus atlantica Manetti. J. For. Sci. 2018 ;64 :506–513. DOI:10.17221/69/2018-JFS.

Ehrenfeld JG, Ravit B, Elgersma K. Feedback in the Plant-Soil System. Annu. Rev. Environ. Resour. 2005 ;30 :75–115. DOI:10.1146/annurev.energy.30.050504.144212.

Wang GZ, Li HG, Christie P, Zhang FS, Zhang JL, Bever JD. Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant Soil. 2016 ;415 :1–12. DOI:10.1007/s11104-016-3139-z.

Hocine H, Belarbi H, Perrin R, Chevalier G. Possibilités de Mycorhization de Cedrus Atlantica Manetti. Ann Rech Maroc. 1994;27, 349–361.

El Hassani FZ, Zinedine A, Mdaghri Alaoui S, Aissam H, Errachidi F, Merzouki M, Benlemlih M. Effect of olive mill vegetable water spreading on soil microbial communities and soil properties. World J. Agric. Sci. 2007; 3 :663–669.

Niemi K, Scagel C. Root induction of Pinus sylvestris L. hypocotyl cuttings using specific ectomycorrhizal fungi in vitro. in protocols for micropropagation of woody trees and fruits; Jain, S.M., Häggman, H., Eds, Springer Netherlands: Dordrecht. 2007;147–152. ISBN 978-1-4020-6352-7.

Cartwright J, Dzantor EK, Momen B. Soil Microbial Community Profiles and Functional Diversity in Limestone Cedar Glades. Catena 2016 ;147 :216–224. DOI:10.1016/j.catena.2016.07.010.

Zak J, Willig M, Moorhead D, Wildman H. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 1994 ;26 :1101–1108. DOI:10.1016/0038-0717(94)90131-7.

Liu J, Ngoc Ha V, Shen Z, Zhu H, Zha, F, Zhao Z. Characteristics of bulk and rhizosphere soil microbial community in an ancient platycladus orientalis forest. Appl. Soil Ecol. 2018 ;132 :91–98. DOI:10.1016/j.apsoil.2018.08.014

Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G. Morphogenetic modifications induced by pseudomonas fluorescens A6RI and glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol. 2002 ; 155 :293–300. DOI:10.1046/j.1469-8137.2002.00460.x.

Buscot F, Herrmann S. At the frontier between basidiomycotes and plants: reciprocal interactions between mycorrhiza formation and root development in an in vitro system with oaks and hymenomycetes. In Frontiers in basidiomycote mycology; AgererR, Piepenbring M, Blanz P. Eching, Germany: IHW-Verlag & Verlagsbuchhandlung. 2004; 361–376.

Yao Q, Wang LR, Zhu HH, Chen JZ. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) Seedlings. Sci. Hortic. 2009 ;121 :458–461. DOI:10.1016/j.scienta.2009.03.013.

Jog R, Nareshkumar G, Rajkumar S. Enhancing soil health and plant growth promotion by actinomycetes. in plant growth promoting actinobacteria: A new avenue for enhancing the productivity and soil fertility of grain legumes; Subramaniam, G., Arumugam, S., Rajendran, V., Eds, Springer Singapore: Singapore. 2016;33–45. ISBN 978-981-10-0707-1.

Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera Spatulata Lab. Fungal Biol. 2016;120:433–448. DOI:10.1016/j.funbio.2015.12.006.