• Home
  • Register
  • Login

Asian Journal of Mathematics and Computer Research

  • About
    • About the Journal
    • Submissions & Author Guidelines
    • Articles in Press
    • Editorial Team
    • Editorial Policy
    • Publication Ethics and Malpractice Statement
    • Contact
  • Archives
  • Indexing
  • Submission
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 29 [Issue 3]
  4. Original Research Article

SPLIT DUAL JACOBSTHAL AND JACOBSTHAL-LUCAS QUATERNIONS

  •  UMIT TOKESER
  •  ZAFER UNAL

Asian Journal of Mathematics and Computer Research, Page 1-9
DOI: 10.56557/ajomcor/2022/v29i37938
Published: 19 November 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Many researchs have been studied on quaternions since Hamilton introduced them to the literature in 1843. In our paper, we gave split dual Jacobsthal (SDJ) and split dual Jacobsthal-Lucas (SDJL) quaternions over the algebra H(μ,n) with the basis {1; e1; e2; e3}, where  μ,n ∈ Z. Binet like formulaes are obtained for these quaternions. Also, given Vajda identities for SDJ and SDJL quaternions.As a special case of Vajda identities, d'Ocagne's, Cassini's and Catalan's identities are represented.


Keywords:
  • quaternions
  • dual Jacobsthal and dual Jacobsthal-Lucas numbers
  • plit dual Jacobsthal and split dual Jacobsthal-Lucas quaternions
  • PDF Requires Subscription or Fee (USD 30)
  •  PDF (INR 2100)

How to Cite

TOKESER, U., & UNAL, Z. (2022). SPLIT DUAL JACOBSTHAL AND JACOBSTHAL-LUCAS QUATERNIONS. Asian Journal of Mathematics and Computer Research, 29(3), 1-9. https://doi.org/10.56557/ajomcor/2022/v29i37938
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Horadam AF. Basic Properties of a Certain Generalized Sequence of Numbers. The Fibonacci Quart. 1965; 3(3):161-177.

Yagmur T. Split Jacobsthal and Jacobsthal-Lucas Quaternions. Communications in Mathematics and Applications. 2019; 10(3):429-438.

Horadam AF. Complex Fibonacci numbers and Fibonacci Quaternions. Am. Math. Monthly. 1963; 70(3):289-291.

Cliord WK. Preliminary Sketch of bi-Quaternions. Proc. Lond. Math. Soc. 1871; 4:381-395.

Swamy MN. On Generalized Fibonacci Quaternions. The Fibonacci Quart. 1973; 11(5):547-

Halc S. On Fibonacci Quaternions. Adv. Appl. Cliord Algebras. 2012; 22(2):321-327.

Tokeser U, Unal Z, Bilgici G. Split Pell and Pell-Lucas Quaternions. Adv. Appl. Cliord Algebras. 2017; 27(2):1881-1893.

Akyigit M, Kosal HH, Tosun M. Split Fibonacci Quaternions. Adv. Appl. Cliord Algebras. 2013; 23(3):535-545.

Horadam AF. Jacobsthal Representation Numbers. The Fibonacci Quart. 1996; 34:40-54.

Ercan Z, Yuce S. On Properties of The Dual Quaternions. European Journal of Pure and Applied Math. 2011; 4(2):142-146.

Szynal-Liana A, Wloch I. A Note on Jacobsthal Quaternions. Adv. Appl. Cliord Algebras. 2016; 26(1):441-447.

Horadam AF. Jacobsthal Representation Polynomials. The Fibonacci Quart. 1997; 35:137-148.

Horadam AF. Jacobsthal and Pell Curves. The Fibonacci Quart. 1988; 26:79-83.

Aydin FT, Yuce S. A New Approach to Jacobsthal Quaternions. Filomat. 2017; 31(8):5567-

Cerin Z. Formulae for Sums of Jacobsthal-Lucas Numbers. International Mathematical Forum. 2007; 2(40):1969-1984.

Cerin Z. Sums of Squares and Products of Jacobsthal Numbers. Journal of Integer Sequence. 2007; Article 07.2.5.

Cerin Z. Some Alternating Sums of Lucas Numbers. Central European J. Math. 2005; 3:1-13.

Djordjevic GB. Generalized Jacobsthal Polynomials. The Fibonacci Quart. 2009; 38:239-243.
  • Abstract View: 48 times
    PDF Download: 2 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Subscription

Login to access subscriber-only resources.

Information
  • For Readers
  • For Authors
  • For Librarians


Terms & Condition | Privacy Policy | Help | Team | Advertising Policy
Copyright @ 2000-2021 I.K. Press. All rights reserved.