Main Article Content



Sorghum (Sorghum bicolor L. Moench) production in warm and humid regions is limited by foliar diseases, seedlings and grain mold, which can be caused by a complex of pathogenic and opportunistic fungi. Anthracnose and downy mildew diseases are one of the most devastating fungal diseases which limits the production and productivity of the crop. Exserohilum turcicum is an important pathogen of both sorghum causing sorghum leaf blight. Because the same pathogen can infect and cause major losses for two of the most important grain crops. Sorghum grain mold, particularly Fusarium and Curvularia grain mold, are important on improved, short and medium duration sorghum cultivars worldwide that mature during the rainy season in humid, tropical and subtropical climates. Usually the grain mold, is used to describe the diseased appearance of sorghum grain resulting from infection by one or more pathogenic or saprophytic fungi. Arbuscular mycorrhizal fungi (AMF) are widely known to form a symbiosis with higher plants and enhance plant adaptation to a series of environmental stresses. Sweet sorghum (Sorghum bicolor L. Moench) is considered a promising alternative feedstock for bioalcohol production because of its sugar-rich stalk and high biomass. The large diversity of Arbuscular mycorrhizal fungi (AMF) associated with sorghum, some of which, known for their use in agriculture, could be used as biofertilizers for sustainable production of sorghum.

Sorghum, Morocco, diseases, fungi, pathogenic, saprophytic, mycorrhizal fungi.

Article Details

How to Cite
Review Article


Sleper DA, Poehlman JM. Breeding field crops. 5th ed. USA: Wiley Blackwell Publishing. 2006;424.

FAOSTAT. Food and Agriculture Organization (Internet). FAOSTAT; 2020. (Cited February 10, 2020).

Harlan JR, Dewet JMJ. A simplified classification of Cultivated sorghum. Crop Sci. 1972;12(2):172-176.

Noutfia A, Baya B. Sorgho fourrager et sudan-grass (Sorghum spp.). (Ed G. Jaritz et M. Bounejmate). In: Production et utilisation des cultures fourragères au Maroc. INRA Presses, Rabat, Maroc. 1997; 254-262.

Balole TV, Legwaila GM. Sorghumbicolor (L.) Moench (editeurs). PROTA 1: Cereals and pulses/Céreales et legumes secs. In: Brink, M. and Belay, G. (CD-Rom). PROTA, Wageningen, Pays Bas; 2006.

Williams RJ, Frederiksen RA, Girad JC. Manual d’identification des maladies du sorgho et du mil. Bulletin d’information n 2. Patancheru, PA. India: International Institute for the Semi-Arid Tropic. 1978;88.

Forbes GA, Ziv O, Frederiksen RA. Resistance in Sorghum to seedling disease caused by Pythium arrhenomanes. Plant Dis. 1987;71:145-148.

Hulluka M, Esele JPE. Sorghum diseases in Eastern Africa. In: Sorghum and millets diseases: A second world review, ICRISAT, Patencheru.1992;21-24.

Davis MA, Bockus WW. Evidence for a Pythium sp. as a chronic yield reducer in a continuous grain sorghum field. Plant Disease. 2001;85(7):780-784.

DOI: 10.1094/PDIS.2001.85.7.780.

Berber F, Ouazzani Touhami A, Douira A. Identification de la mycoflore pathogène de Sorghumbicolor (L.) Moench, cultivé dans le Gharb et le Loukkos (Nord-ouest du Maroc). Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie. 2008;30:5-11.

Bennett A, Ponder MM, Garcia-Diaz J. Phoma infections: classification, potential food source and their clinical impact. Microorganisms. 2018;6(58):12.

Sutton BC. The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, UK. 1980;696.

Sheriff C, Whelan MJ, Arnold GM, Bailey JA. rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycological Reseach. 1995;99(4):475- 478.


Tesso T, Perumal R, Little CR, Adeyanju A, Radwa GL, Prom LK, Magill CW. Sorghum pathology and biotechnology- A fungal Disease Perspective: Part II Anthracnose, stalk rot, and downy mildew. The European Journal of Science and Biotechnology. 2012;6:31-44.

Prom LK, Erpelding J, Perumal R, Isakeit T, Cuevas H. Response of Sorghum accessions from four African Countries against Colletotrichum sublineolum, causal agent of Sorghum anthracnose. American Journal of Plant Sciences. 2012;3(1):125-129.
DOI: 10.4236/ajps.2012.31014.

Tugizimana F, Djami-Tchatchou AT, Steenkamp PA, Piater LA, Dubery IA. Metabolomicanalysis of defense-related reprogramming inSorghumbicolor in Response to Colletotrichum sublineolum Infection Reveals a Functional Metabolic Web of Phenylpropanoid and Flavonoid Pathways. Frontiers in Plant Science. 2019;9:1-20.

Aragaw G, Chala A, Terefe H. Spatial distribution and association of factors influencing sorghum anthracnose (Colletotrichum sublineolum) epidemics in Eastern Ethiop ia. International Journal of Pest Management. 2019;1-12.

Pastor-Corrales MA. Variation in pathogenicity of Colletotrichum graminicola (Cesati) Wilson and symptom expression of anthracnose of Sorghumbicolor (L.) Moench. PhD Dissertation, Texas A &M University. 1980;293.

Ali MEK, Warren HL. Anthracnose of sorghum. In: de Milliano WAJ, Frederiksen RA, Bengston GD (Eds) Sorghum and Millets Diseases: A Second World Review, ICRISAT, Patancheru, India. 1992;203-208.

Leslie J. Sorghum and Millets Diseases, Iowa St. Chapters 63-74 Iowa State Press, Ames, Iowa, USA. 2002;379-456.

Mathur K, Thakur RP, Neya A, Marley PS, Casela CR. Sorghum anthracnose-problem and management strategies. In J. Leslie (Ed.), Sorghum and Millets Diseases. 2002;211-220. Ames: Iowa State Press.

Marly PS, Diourte M, Neya A, Rattunde FW. Sorghum anthracnose and sustainable management strategies in West and Central Africa. Journal of Sustainable Agriculture. 2004;25(1):43-56. DOI:10.1300/j064v25n01_05

Figueiredo JEF, Depaoli HC, da Silva Coelho VT, Casela CR, da Silva Ferreira A, Guimaraes CT, Gomes EA, Bressan W. Genetic diversity among Colletotrichum sublineolum pathotypes isolated from sorghum (Sorghum bicolor). Revista Brasileira de Milho e Sorgo. 2006 ;5:304-318.

Thakuy RP, Rao VP, Wu BM, Subbarao KV, Tailor HC, Kushwaha US, Dwivedi RR, Krisnaswamy R, Hiremath RV, Indira S. Genetic resistance to foliar anthracnose in sorghum and pathogenic variability in Colletotrichum graminicola. Indian Phytopathology. 2007;60(1):13-23.

Chala A, Brurberg MB, Tronsmo AM. Prevalence and intensity of sorghum anthracnose in Ethiopia. Journal of SAT Agricultural Research. 2007;5:1-3.

Basavaraju P, Shetty HS, De Neergaard E, Jorgensen HJI. Infection biology and defence responses in sorghum against Colletotrichum sublineolum. J. Appl. Microbiol. 2009;107:404-415.
DOI: 101111/j.1365-2672.2009. 04234.x

Balmer D, Flors V, Glauser G, Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013;4:1-12.
DOI: 10.3389/fpls.2013.00082.

Waniska RD, Venkatesha RT, Chandrashekar A, Krishnaveni S, Bejosano FP, Jeoung J, Jayaraj J, Muthukrishnan S, Liang GH. Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold. Journal of Agricultural and Food Chemistry. 2001;49(10):4732-4742.
DOI: 10.1021/jf010007f

Frederiksen RA. Sorghum Downey mildew in the United States: overview and outlook. Plant Disease. 1980;64(10):903-908.

Odvody GN, Frederiksen RA. Use of systemic fungicides metalaxyl and fosetyl-Al for control of sorghum downy mildew in corn and sorghum in South Texas. Plant Dis. 1984;68:604-607.

Williams RJ. Downy mildew of tropical cereals. In: Ingrams DS, Williams PH (eds) Advances in plant pathology Academic press, London. 1984;2:1-103.

Pande S, Bock CH, Bandyopadhyay R, Narayana YD, Reddy BVS, Lenné JM, Jeger MJ. Downy mildew of sorghum. Publication No. 51 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh; 1997.

Craig J. Sorghum downy mildew. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases, 2ndedn. APS Press, St. Paul. 2000;25-27.

Perumal R, Isakeit T, Menz M, Katile S, No EG, Magill CW. Characterization and genetic distance analysis of isolates of Peronosclerospora sorghi using AFLP fingerprinting. Mycol Res. 2006;110:471-478.

Perumal R, Nimmakayala P, Erattaimuthu S, No EG, Reddy UK, Prom LK, Odvody GN, Luster DG, Magill CW. Simple sequence repeat markers useful for Sorghum downy midew (Peronosclerospora sorghi) and reated species. BMC Genet. 2008;9:1-14.
DOI: 10.1186/1471-2156-9-77.

Thakur RP, Rao VP, Sanjana RP. Downy mildew in: Thakur RP, Reddy BVS, Mathur K (eds) Screening techniques for sorghum diseases. Information Bulletin No. 76. International Crops Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh. 2007;31-39.

Wang ML, Ryley M, Meinke H. Prediction of sorghum downy mildew risk in Australia using daily weather data. Australasian Plant Pathology. 2000;29(2):108-119.

Kumi F, Agbahoungba S, Badji A, Odong T, Edema R, Ochwo-Ssemakula M, Nakubulwa D, Tusiime G, Biruma M, Rubaihayo P. Incidence and distribution of downy mildew disease (Peronosclerospora sorghi) of sorghum in Uganda. International Journal Advanced research. 2018;6(5):954-965.

Bock CH, Jeger MJ, Mughogho LK, Mtisi E, Cardwell KF. Production of conidia by Peronosclerospora sorghi on sorghum crops in Zimbabwe. Plant Pathology. 1998;47(3):243-251.

Thakur RP, Pande S. Genetic managment of major fungal pathogens of sorghum. Page 315-326 in Detection of plant pathogens and their managment (Verma, J.P., Varma A. and Kumar D. eds). New Delhi, 110041, India: Angkor Publishers (P) Ltd; 1995.

Jeger MJ. The effect of sowing date on the incidence of sorghum downy mildew in Zimbabwe, Tropical Science. 1998;39:194-203.

Agrios GN. Plant Patholog. 4th Edition. Academic Press. San Diego USA; 1997.

Ramathani I, Biruma M, Martin T, Dixelius C, Okori P. Disease severity, incidence and races of Setosphaeria turcica on sorghum in Uganda. European Journal of Plant Pathology. 2011;131(3):383-392.

Frederiksen RA, Odvody GN (Eds). Compendium of sorghum diseases. (2ndEdn), American Phytopathological Society Press, St. Paul, MN. 2000;78.

Mittal M, Boora KS. Molecular tagging of gene conferring leaf blight resistance using microsatellites in Sorghum (Sorghumbicolor (L.) Moench). Indian Journal of Experimental Biology. 2005; 43(5):462-466.

Ogliaril JB, Guimaraes MA, Camargo LEA. Chromosomal locations of the maize (Zea mays L.) http and rt genes that confer resistance to Exserohilum turcicum. Genetics and Molecular Biology. 2007; 30(3):630-634.

Hennessy GG, Demilliano WAJ, Mclaren CG. Influence of primary weather variables on Sorghum leaf blight severity in Southern Africa. Phytopathology. 1990;80(10):943-5.

Thakur RP, Reddy BVS, Indira S, Rao VP, Navi SS, Yang XB. Sorghum Grain Mold. Information Bulletin No 72. Patancheru, India: International Crops Reserarch Institute for the Semi-Arid Tropics;2006.

Williams RJ, Rao KN. A Review of sorghum grain mold. Trop Pest Manage. 1981;27(2):200-11.

Frederiksen RA, Castor LL, Rosenow DT. Grain mold, small seed and head blight: The Fusarium connection in sorghum. Proceedings of the 37th Annual Corn and Sorghum Industry Research Conference. 1982;37:26-36.

Louvel D, Arnoud M. Moisissures des grains chez le sorgho: définition d’une résistance. Etat des recherches sur le sorgho au Sénégal. 1984; Actes de la réunion de travail du 22 Avril; 1983.

Forbes GA, Bandyopadhyay R, Garcia G. A review of sorghum grain mold. In: de Miliano WAJ, Frederiksen RA. Bengston GD. (Eds) Sorghum and millets diseases: a second world review. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India. 1992;253-264.

Bandyopadhyay R, Butler DR, Chandrashekar A, Reddy RK, Navy SS. Biology epidemiology and management of sorghum grain mold. In: Chandrashekar A, Bandyopadhyay R, Hall AJ (Eds) Proceedings of Consultative Group Meeting on Technical and Institutional Options for Sorghum Grain Mold Management, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India. 2000;34-71.

Audilakshmi S, Das IK, Ghorade RB, Mane PN, Kamatar MY, Narayana YD, Seetharama N. Genetic improvement of sorghum for grain mould resistance: I. Performance of sorghum recombinant inbred lines for grain mould reactions across environnements. Crop Protection. 2011;30(7):753-758.

Castor LL, Frederiksen RA. Seed molding of grain sorghum caused by Fusarium and Curvularia species. Proceedings of the American Phytopathologycal Society. 1977;4:151.

Girish AG, Rao VP, Thakur RP. Diversity of grain mold fungi on selected sorghum genotypes. Indian Phytopath. 2004;57(1): 84/87.

Erpelding JE, Prom LK. Seed mycoflora for grain mold from natural infection in sorghum germplasm growth at Isabela, Puerto Rico and their association with kernel weight and germination. Plant Pathol. J. 2006;5:106-112.
DOI: 10.3923/ppj.2006.106.112

Prom LK, Isakeit T, Perumal R, Erpelding JE, Rooney W, Magill CW. Evaluation of the Ugandan sorghum accessions for grain mold and anthracnose resistance. Crop Protection. 2011;30(5):566-571.

Das IK, Audilakshmi S, Patil JV. Fusarium Grain Mold: The Major Component of Grain Mold in Sorghum (Sorghum bicolor L. Moench). The European Journal of Plant Science and Biotechnology. 2012;6(Special Issue 1):45-55.

Bonzi S. Evaluation de la mycoflore des semences de sorgho et de Poaceae sauvage: analyse de la variabilité des isolats de Phomasorghina (Sacc.) Boerema Dorenbosch et Van Kest. et recherche de méthodes de lutte alternatives. Thèse de Doctorat, Université Polytechnique de Bobo-Dioulasso, Institut de Développement rural, Burkina Faso. 2013;160.

Cuevas HE, Fermin-Pérez RA, Prom LK, Cooper EA, Bean S, Rooney WL. Genome-wide association mapping of grain mold resistance in US sorghum association panel. The Plant Genome. 2019;12(2): 1-11.

Smith SE, Read DJ. Mycorrhizal Symbiosis. (3rd Ed.), San Diego: Academic Press. 2008;117-144.

Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology. 2016;20:241-248.

Prasad R, Bhola D, Adki K, Cruz C, Sairam KVSS, Tuteja N, Varma A. Introduction of mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza, Springer Switzerland. 2017;1-7.

Ferrol N, Barea JM, Azcon-Aguilar C. Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant Soil. 2002;244:231-237.

Friberg S. Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on the Niger inland delta, Mali, West Africa. CBM s Skriftserie. 2001;3: 53-80.

Tchabi A, Coyne D, Houtondji F, Lawouin L, Wiemken A, Oehl F. Arbuscular mycorrhzal fungal communities in sub-Sahara Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza. 2008;18: 181-195.

Gnamkoulamba A, Tounou AK, Tchabi A, Agboka K, Adjévi AKM, Batawila K. Prévalence et diversité des spores des champignons mycorhiziens arbusculaires en culture de riz sous les différents systèmes de culture de riz dans les cinq zones agro-écologiques au Togo. Journal of Applied Biosciences. 2018;126:12647-12664.

Paula MA, Reis VM, Dobereiner J. Interactions of Glomusclarum with Acetobacterdia zotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.) and sweet sorghum (Sorghum vulgar). Biol. Fertil. Soil. 1991;11:111-115.

Deepadevi M, Basu MJ, Santhaguru K. Responce of Sorghum bicolor (L.) Monech to dual inoculation with Glomus fasciculatum and Herbaspirillum seropedicae. General. Appl. Plant Physiol. 2010;36:176-182.

Wang F, Adams CA, Shi Z, Sun Y. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere. 2018;209:421-429.

Wang F, Sun Y, Shi Z. Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum. Microorganisms. 2019;7(9):289-303.

Muthukumar T, Udaiyan K. Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza. 2000;9:297-313.

Husband R, Allen HJ, Peter W, Young JPW. Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest. FEMS Microbiology Ecology. 2002; 42:131-136.

Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J. Impact of agricultural managment on arbuscular mycorrhizal fungal communities in KenyenFerralsol. Agriculure, Ecosystems and Environment. 2007;119:22-32.

Tchabi A, Burger S, Coyne D, Houtondji F, Lawouin L, Wiemken A, Oehl F. Promiscuous arbuscular mycorrhizal symbiosis of yam (Dioscorea spp.), a key staple crop in West Africa. Mycorrhiza. 2009;19:375-392.

Bansal M, Kkreja K, Dudeja SS. Diversity of arbuscular mycorrhizal fungi, prevalent in rhizosphere of different crops grown in the university farm. African Journal of Microbiology Research. 2012;6:4557-4566.

Singh R, Adholeya A. Diversity of AM (Arbuscular mycorrhizal) Fungi in wheat Agro-climatic Region of India. Virol Mycol. 2013;2:116.

Atrib M, El Hazzat N, Msairi S, Hibilik N, El Gabardi S, Touati J, Selmaoui K, Ouazzani Touhami A, Douira A. Behavior of composite endomycorrhizal inoculum in the rhizosphere of five mycotrophic species. Plant Archives. 2020;19(2):2531-2537.

Prom LK, Perumal R, Monthes-Garcia N, Isakeit T, Odvody GN, Rooney WL, Little CR, Magill C. Evaluation of Gambian and Malian sorghum germplasm against downy mildew pathogen, Peronosclerospora sorghi, in Mexico and the USA. Journal Gen. Plant Pathol. 2015;81:24-31.

Kumi F, Agbahoungba S, Badji A, Mwila N, Ibanda A, Anokye M, Odong T, Wasswa P, Ochwo-Ssemakula M, Tusiime G, Biruma M, Kassim S, Rubaihayo P. Genetic diversity and population structure of Peronosclerospora sorghi isolates of sorghum in Uganda. International Journal of Environment, Agriculture and Biotechnology. 2018;3(5):1659-1667.

DOI: 10.22161/ijeab/3.5.11

Mathiyazhagan S, Karthikeyan M, Sandosskumar R. Archives of phytopathology and plant protection analysis of variability among the isolates of Peronosclerospora sorghi from sorghum and cornbased on restriction fragment lenght polymorphism of ITS region of ribosomal. Archives of Phytopathology and Plant Protection. 2008;3 7-41.

Ladhalakshmi D, Vijayasamundeeswari A, Paranidharan V, Samiyappan R, Velazhahan R. Molecular identification of isolates of Peronosclerosporasorghi from maize using PCR -based SCAR marker. World Journal of Microbiology. 2009;25(12):2129-2135.

Lukman R, Afifuddin A, Lubberstedt T. Unraveling the genetic diversity of maize downy mildew in Indonesia. Plant Pathology & Microbiology. 2013;4(2):162-170.
DOI: 10.4172/2157-7471.1000162

Bock CH, Jeger MJ, Mughogho LK; Cardwell KF, Mtisi E, Kaula G, Mukansabimana D. Variability of Peronosclerospora sorghi isolates from different geographi c locations and hosts in Africa. Mycol. Res. 2000;104:61-68.

Beshir MM, Ali AM, Okori P. Inheritance of resistance to Turcicum Leaf blight in sorghum. African Crop Science Journal. 2012;20(1):155-161.

Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL. Identification of genomic regions that affect grain-mold incidence and other traits of agronomic importance in sorghum. TheorAppl Genet. 2001;102(2-3):307-319.

Audilakshmi S, Stenhouse JW, Reddy TP. Genetic analysis of grain mold resistance in white seed sorghum genotypes. Euphytica. 2005;145:95-101.

Cuevas HE, Prom LK, Isakeit T, Radwan G. Assessment of sorghum germplasm from Burkina Faso and South Africa to identity new sources of resistance to grain mold and anthracnose. Crop Prot. 2016;79:43-50.

Erpelding J. New sources of grain mold resistance among sorghum accessions from Sudan. Trop. Subtrop. Agroecosystems. 2009;10:457-463.

Cuevas HE, Prom LK, Rosa-Valentin G. Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease reresistant genes. Plos One. 2018;15.

Schübler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research. 2001;105:1413-1421.

Jefwa J, Vanlauwe B, Coyne D, Van Asten P, Gaidashova S, Mwashash M, Elsen A. Benefits and potential use of arbuscular mycorrhizal fungi (AMF) in Banana and Plantain (Musa sp.) systems in Africa. Proc. IC on Banana et Plantain in AfricaEds: T. Dubois et al. Acta Horticulturae. 2010;879: 479-486.

Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environnements. Biotechnology Advances. 2014;32:429-448.

Zhang YC, Wang P, Wu QH, Zou YN, Bao Q, Wu QS. Arbuscularcmycorrhizas improve and soil structure in trifoliate orange under salt stress. Archives of Agronomy and Soil Science. 2017;63:491-500.

Pozo MJ, Jung SC, Lopez-Raez JA, Acon-Aguilar C. Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress. The role of plant defense mechanisms. In Koltai, H. (Eds.), Arbuscular Mycorrhizas: Physiology and Function. 2010;193-207.
DOI: 10.1007/978-90-481-9489-6_9

Maiti D. Improving Activity of Native Arbuscular Mycorrhizal Fungi (AMF) for Mycorrhizal Benefits in Agriculture: Status and Prospect. Journal of Biofertilizers & Biopesticides. 2011; 02(03).

Amel A, Soad H, Ahmed M, Ismail AA. Activation of tomato plant defense response against Fusarium wilt disease using Trichoderma harzianum and salicylic acid under greenhouse conditions. Research Journal of Agriculture & Biological Sciences. 2010;6:328-338.

Bûcking H, Kafle A. Arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge & research gaps. Agronomy. 2015;5:587-612.

Elsen A, Gervacio D, Swennen R, De Wael D. AMF-induced biocontrol against plant parasitic nematod in Musa sp.: a systemic effect. Mycorrhiza. 2008;18:251-256.

Ndoye F, Diedhiou AG, Gueye M, Fall D, Barnaud A, Sy MO, Noba K, Diouf D, Kane A. Réponse du fonio blan (DigitariaexilisStapf) à l’inoculation avec des champignons mycorhiziens à arbuscules en conditions semi-controlées. Journal of Applied Biosciences. 2016;103: 9784-9799.

Tchabi A, Houtondji F, Ogunsola B, Lawouin L, Coyne D, Wiemken A, Oehl F. Effect of tow species of arbuscular mycorrhizal fungi inoculation on development of micro-propagated yam plantlets and suppression of Scutellonema bradys (Tylenchideae). Journal of Entomology and Nematology. 2016;8:375-392.

Aguegue RM, Noumavo PA, Gustave, Dagbenonbakin D, Baba-Moussa L. Arbuscular mycorrhizal fertilization of corn (Zea mays L.) cultuvated on ferrous soil in southern Benin. Journal of Agricultural Studies. 2017;5:99-115.

Atrib M, El Gabardi S, Touati J, Rhimini Y, Selmaoui K, Mouria A, OuazzaniTouhami A, Benkirane R, Douira A. Study of Arbuscular Mycorrhizal Fungi Diversity and its effect on growth and develepment of citrus auranitium L. Journal of Experimental Agriculture International. 2017;15:1-12.

Talbi Z, Chliyeh M, Mouria A, El Asri A, AitAguil F, OuazzaniTouhami A, Benkirane R, Douira A. Effect of double inoculation with endomycorrhizae and Trichodermaharzianum on the growth of carob plants. International Journal of advances in Parmacy, Biology and Chemistry. 2016;5:2277-4688.

Touati J, Chliyeh M, Ouazzani Touhami A, Benkirane R, Douira A. Effect of arbuscular mycorrhizal fungi on plant growth and root development of the boxthorn tree (Lycium europaeum) under a green house conditions. International Journal of Pure and Applied Bioscience. 2015;2:84-91.

Sghir F, ChliyehM, Touati J, MouriaA, OuazzaniTouhami A, Filali-Maltouf A, El Modafar C, Moukhli A, Benkirane R, Douira A. Effect of a dual inoculation with endomycorrhizae and Trichoderma harzianum on the growth of date palm seedlings. International Journal of Pure and Applied Bioscience. 2014;6:12-26.

Chliyeh M, Ouazzani Chahdi A, Selmaoui K, Ouazzani Touhami A, Filali-Maltouf A, El Modafar C, Moukhli A, Oukabli A, Benkirane R, Douira A. Effect of Trichoderma harzianum and arbuscular mycorrhizal fungi against Verticillium wilt of tomato. International Journal of Recent Scientific Research. 2014;5:449-459.